Probability Generating Functions

Q1, (2013, Q5)

The discrete random variable X has probability generating function given by

$$G_v(t) = k(5t^{-1} + 3 + 2t^2),$$

where k is a constant.

(i) Find

(a) the value of
$$k$$
, [1]

[1]

- (ii) The random variables X_1 and X_2 are independent observations of X.
 - (a) Write down the probability generating function of Y, where $Y = X_1 + X_2$. [1]
 - (b) Use your answer to part (ii)(a) to find E(Y) and Var(Y). [8]

Q2, (2015, Q3)

The probability generating function of the random variable X is $\frac{1}{81} \left(t + \frac{2}{t} \right)^4$.

- (i) Use the probability generating function to find E(X) and Var(X). [5]
- (ii) The random variable Y is defined by $Y = \frac{1}{2}(X + 4)$. By finding the probability distribution of X, or otherwise, show that $Y \sim B(n, p)$, stating the values of n and p. [4]

Q3, (2016, Q3)

- (i) Show that the probability generating function of a random variable with the distribution B(n, p) is $(1 p + pt)^n$. [3]
- (ii) R and S are independent random variables with the distributions $B(8, \frac{1}{4})$ and $B(8, \frac{3}{4})$ respectively. Show that the probability generating function of R + S can be expressed as

$$\left(\frac{3}{16} + \frac{1}{16}t(10 + 3t)\right)^8$$

and use this result to find P(R + S = 1).

[5]

[2]

Q4, (2017, Q2)

A discrete random variable X has the following probability distribution.

x	-1	2
P(X = x)	$\frac{1}{3}$	<u>2</u> 3

- (i) Write down the probability generating function of X.
- (ii) T is the sum of ten independent observations of X. Use the probability generating function of T
 - to find (a) E(T), [4]
 - **(b)** P(T=8). [3]

Q5, (2019 Specimen, Q1)

The discrete random variable X has probability generating function $G_{\chi}(t)$ given by

$$G_X(t) = at \left(t + \frac{1}{t}\right)^3$$

where a is a constant.

- (a) Find, in either order, the value of a and the set of values that X can take. [4]
- **(b)** Find the value of E(X).